1,889 research outputs found

    Building the Brazilian Academic Genealogy Tree

    Full text link
    Along the history, many researchers provided remarkable contributions to science, not only advancing knowledge but also in terms of mentoring new scientists. Currently, identifying and studying the formation of researchers over the years is a challenging task as current repositories of theses and dissertations are cataloged in a decentralized way through many local digital libraries. Following our previous work in which we created and analyzed a large collection of genealogy trees extracted from NDLTD, in this paper we focus our attention on building such trees for the Brazilian research community. For this, we use data from the Lattes Platform, an internationally renowned initiative from CNPq, the Brazilian National Council for Scientific and Technological Development, for managing information about individual researchers and research groups in Brazil

    Neurocomputational mechanisms underlying emotional awareness: Insights afforded by deep active inference and their potential clinical relevance

    Get PDF
    Emotional awareness (EA) is recognized as clinically relevant to the vulnerability to, and maintenance of, psychiatric disorders. However, the neurocomputational processes that underwrite individual variations remain unclear. In this paper, we describe a deep (active) inference model that reproduces the cognitive-emotional processes and self-report behaviors associated with EA. We then present simulations to illustrate (seven) distinct mechanisms that (either alone or in combination) can produce phenomena – such as somatic misattribution, coarse-grained emotion conceptualization, and constrained reflective capacity – characteristic of low EA. Our simulations suggest that the clinical phenotype of impoverished EA can be reproduced by dissociable computational processes. The possibility that different processes are at work in different individuals suggests that they may benefit from distinct clinical interventions. As active inference makes particular predictions about the underlying neurobiology of such aberrant inference, we also discuss how this type of modelling could be used to design neuroimaging tasks to test predictions and identify which processes operate in different individuals – and provide a principled basis for personalized precision medicine

    Neutron scattering sum rules, symmetric exchanges, and helicoidal magnetism in MnSb2O6

    Get PDF
    MnSb2O6 is based on the noncentrosymmetric P321 space group with magnetic Mn2+ (S=5/2, L≈0) spins ordering below TN=12K in a cycloidal structure. The spin rotation plane was found to be tilted away from the c axis [Kinoshita, Phys. Rev. Lett. 117, 047201 (2016)10.1103/PhysRevLett.117.047201] resulting as a helicoidal ground state, which we refer as the tilted structure. In our previous diffraction study [Chan, Phys. Rev. B 106, 064403 (2022)10.1103/PhysRevB.106.064403] we found no evidence that this tilted structure is favored over the pure cycloidal order (referred as the untilted structure). The ground-state magnetic structure, expected to be built and originate from seven nearest-neighbor Heisenberg exchange constants, has been shown to be coupled to the underlying crystallographic chirality with polar domain switching being reported. We apply neutron spectroscopy to extract these symmetric exchange constants. Given the high complexity of the magnetic exchange network, crystallographic structure and complications fitting many parameter linear spin-wave models, we take advantage of multiplexed neutron instrumentation to use the first moment sum rule of neutron scattering to estimate these symmetric exchange constants. The first moment of neutron scattering provides a way of deriving the Heisenberg exchange constant between two neighboring spins if the relative angle and distance of the two ordered spins is known. We show that the first moment sum rule combined with the known magnetic ordering wavevector fixes six of the seven exchange constants. The remaining exchange constant is not determined by this analysis because of the equal spatial bond distances present for different chiral exchange interactions. However, we find this parameter is fixed by the magnon dispersion near the magnetic zone boundary, which is not sensitive to the tilting of the global magnetic structure. We then use these parameters to calculate the low-energy spin-waves in the Néel state to reproduce the neutron response without strong antisymmetric coupling. Using Green's response functions, the stability of long-wavelength excitations in the context of our proposed untilted magnetic structures is then discussed. The results show the presence of strong symmetric exchange constants for the chiral exchange pathways and illustrate an underlying coupling between crystallographic and magnetic "chirality"through predominantly symmetric exchange. We further argue that the excitations can be consistently modelled in terms of an untilted magnetic structure in the presence of symmetric-only exchange constants

    Dealing with Feelings: Characterization of Trait Alexithymia on Emotion Regulation Strategies and Cognitive-Emotional Processing

    Get PDF
    Background: Alexithymia, or "no words for feelings'', is a personality trait which is associated with difficulties in emotion recognition and regulation. It is unknown whether this deficit is due primarily to regulation, perception, or mentalizing of emotions. In order to shed light on the core deficit, we tested our subjects on a wide range of emotional tasks. We expected the high alexithymics to underperform on all tasks. Method: Two groups of healthy individuals, high and low scoring on the cognitive component of the Bermond-Vorst Alexithymia Questionnaire, completed questionnaires of emotion regulation and performed several emotion processing tasks including a micro expression recognition task, recognition of emotional prosody and semantics in spoken sentences, an emotional and identity learning task and a conflicting beliefs and emotions task (emotional mentalizing). Results: The two groups differed on the Emotion Regulation Questionnaire, Berkeley Expressivity Questionnaire and Empathy Quotient. Specifically, the Emotion Regulation Quotient showed that alexithymic individuals used more suppressive and less reappraisal strategies. On the behavioral tasks, as expected, alexithymics performed worse on recognition of micro expressions and emotional mentalizing. Surprisingly, groups did not differ on tasks of emotional semantics and prosody and associative emotional-learning. Conclusion: Individuals scoring high on the cognitive component of alexithymia are more prone to suppressive emotion regulation strategies rather than reappraisal strategies. Regarding emotional information processing, alexithymia is associated with reduced performance on measures of early processing as well as higher order mentalizing. However, difficulties in the processing of emotional language were not a core deficit in our alexithymic group

    Madness decolonized?: Madness as transnational identity in Gail Hornstein’s Agnes’s Jacket

    Get PDF
    The US psychologist Gail Hornstein’s monograph Agnes’s Jacket: A Psychologist’s Search for the Meanings of Madness (2009) is an important intervention in the identity politics of the mad movement. Hornstein offers a resignified vision of mad identity that embroiders the central trope of an “anti-colonial” struggle to reclaim the experiential world “colonized” by psychiatry. A series of literal and figurative appeals make recourse to the inner world and (corresponding) cultural world of the mad, as well as to the ethno-symbolic cultural materials of dormant nationhood. This rhetoric is augmented by a model in which the mad comprise a diaspora without an origin, coalescing into a single transnational community. The mad are also depicted as persons displaced from their metaphorical homeland, the “inner” world “colonized” by the psychiatric regime. There are a number of difficulties with Hornstein’s rhetoric, however. Her “ethnicity-and-rights” response to the oppression of the mad is symptomatic of Western parochialism, while her proposed transmutation of putative psychopathology from limit upon identity to parameter of successful identity is open to contestation. Moreover, unless one accepts Hornstein’s porous vision of mad identity, her self-ascribed insider status in relation to the mad community may present a problematic “re-colonization” of mad experience

    Safe nanoengineering and incorporation of transplant populations in a neurosurgical grade biomaterial, DuraGen PlusTM, for protected cell therapy applications

    Get PDF
    High transplant cell loss is a major barrier to translation of stem cell therapy for pathologies of the brain and spinal cord. Encapsulated delivery of stem cells in biomaterials for cell therapy is gaining popularity but experimental research has overwhelmingly used laboratory grade materials unsuitable for human clinical use representing a further barrier to clinical translation. A potential solution is to use neurosurgical grade materials routinely used in clinical protocols which have an established human safety profile. Here, we tested the ability of Duragen Plus (TM)- a clinical biomaterial used widely in neurosurgical duraplasty procedures, to support the growth and differentiation of neural stem cells- a major transplant population being tested in clinical trials for neurological pathology. Genetic engineering of stem cells yields augmented therapeutic cells, so we further tested the ability of the Duragen Plus (TM) matrix to support stem cells engineered using magnetofection technology and minicircle DNA vectors- a promising cell engineering approach we previously reported (Journal of Controlled Release, 2016 a &b). The safety of the nano-engineering approach was analysed for the first time using sophisticated data-independent analysis by mass spectrometry-based proteomics. We prove that the Duragen Plus (TM) matrix is a promising biomaterial for delivery of stem cell transplant populations, with no adverse effects on key regenerative parameters. This advanced cellular construct based on a combinatorial nano-engineering and biomaterial encapsulation approach, could therefore offer key advantages for clinical translation

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state
    corecore